

NAU Water Buffalo Engineering

NAU DRAINAGE PLAN

NAU WATER BUFFALO ENGINEERING

JIANGNAN YI

CONNOR KLEIN

YUZHI ZHANG

YIYANG

PROJECT BACKGROUND

- Drainage Study on NAU's Northern
 Campus on Eastburn Education (Bldg 27),
 Cline Library (Bldg 28) and Gammage
 (Bldg 1)
- Client: NAU Facility Services
- Redesign Hydraulic infrastructure surrounding Bldgs 1,27&28 to mitigate Stormwater damage.

Figure 1: Location of Project Site on NAU's north campus

PRELIMINARY WORK AND SURVEYING

Gammage Survey

Basin Delineation-Gammage

Figure 2: Basin Delineation for Gammage Building

Figure 3: Topo map for Gammage Drainage Basin

PRELIMINARY WORK AND SURVEYING

Cline Library & Eastburn Education Building Survey

Basin Delineation-Eastburn Education & Cline Library

Drainage divide within watershed

Figure 4: Basin Delineation for Eastburn & Cline Library Building

Figure 5: Topo map for Eastburn & Cline Library Building Drainage Basin

HYDROLOGIC ANALYSIS (GAMMAGE)

Gammage Watershed

All hydrologic analysis done through Rational method with weighted curve number as per City of Flagstaff Stormwater Design Manual Rational Equation: *Q=C×I×A* × C_f

Q = maximum rate of runoff (cfs)

- C_f = antecedent precipitation factor
- C = runoff coefficient
- I = rainfall intensity (in/hr)
- A = drainage area of basin (acres)

 Table 1: Rational Method Runoff Calculations for Gammage

HYDROLOGIC ANALYSIS (CLINE/LIBRARY EASTBURN)

Gammage Watershed

All hydrologic analysis done through Rational method with weighted curve number as per City of Flagstaff Stormwater Design Manual Rational Equation: *Q=C×I×A* × C_f

Q = maximum rate of runoff (cfs) C_f= antecedent precipitation factor C = runoff coefficient I = rainfall intensity (in/hr) A = drainage area of basin (acres)

	Surface	Runoff	Area	Surface	Runoff	Area	Surface	Runoff	Area	Rainfall Intensity	Cf	Total
	Type 1	Coefficient	(acres)	Type 2	Coefficient	(acres)	Type 3	Coefficient	(acres)	(in/hr)		Flow
		"C"			"C"			"C"		"i"		(cfs)
10 year	Cline-Eastburn Roof	0.95	2.89	Cline-Eastburn Parking Lot	0.95	4.64	Gravel Parking Lot	0.50	0.26	4.50	1.07	35.08
25 year	Cline-Eastburn Roof	0.95	2.89	Cline-Eastburn Parking Lot	0.95	4.64	Gravel Parking Lot	0.50	0.26	5.34	1.07	41.62
50 year	Cline-Eastburn Roof	0.95	2.89	Cline-Eastburn Parking Lot	0.95	4.64	Gravel Parking Lot	0.50	0.26	6.00	1.07	46.77
100 year	Cline-Eastburn Roof	0.95	2.89	Cline-Eastburn Parking Lot	0.95	4.64	Gravel Parking Lot	0.50	0.26	6.66	1.07	51.91

Table 2: Rational Method Runoff Calculations for Cline Library/Eastburn Education Watershed

HYDRAULIC ANALYSIS OF CURRENT SYSTEM (GAMMAGE)

Manning's Equation:

$$Q = VA = (\frac{k}{n}) \times A \times R_h^{\frac{2}{3}} \times \sqrt{S}$$

- Q = Flow Rate (cfs)
- V = Velocity (ft/s)
- $A = Cross-Sectional Area (ft^2)$
- n = Manning's Roughness Coefficient
- $R_{h} =$ Hydraulic Radius (ft)
- S = Channel Slope (ft/ft)
- k = conversion factor 1.49 for English units

Table 3: Manning's Equation to find capacity of current channel at Gammage

HYDRAULIC ANALYSIS OF CURRENT SYSTEM (CLINE/EASTBURN)

Manning's Equation:

$$Q = VA = (\frac{k}{n}) \times A \times R_h^{\frac{2}{3}} \times \sqrt{S}$$

Q = Flow Rate (cfs)

V = Velocity (ft/s)

- $A = Cross-Sectional Area (ft^2)$
- n = Manning's Roughness Coefficient

 $R_{h} = Hydraulic Radius (ft)$

- S = Channel Slope (ft/ft)
- k = conversion factor 1.49 for English units

Table 4: Manning's Equation to find capacity of 2 ft. Diameter Pipe at Cline Library

DESIGN ALTERNATIVES FOR CLINE LIBRARY/EASTBURN

Design 1 (Enlarge Pipe)

 Increase Pipe Size to Increase Storm Drain Capacity

Figure 6: Corrugated Metal Pipe Storm drain [6]

Design 2 (Green-roof)

 Apply a Green-roof to reduce Building Runoff while improving sustainability

Figure 7: Green roof [7]

Design 3 (Permeable Pavement)

Repave the large
 Eastburn/Cline Library Parking
 Lot with permeable asphalt,
 decreasing surfaced runoff

Figure 8: Permeable Pavement [8]

DESIGN #I, CLINE LIBRARY (ENLARGE PIPE ONLY)

 Using the 25-year storm runoff from the Rational Method, Manning's Equation is used to back calculate the minimum pipe diameter to convey the flow

Table 5: Manning's Equation for minimum pipe diameter to convey a 25-year storm

Storm Event Flow (cfs)	k	n	Channel Hydraulic Radius	Channel Slope	Channel Cross-Sectional Area	Min Diameter (ft)
41.62	1.49	0.027	0.94	0.005	11.11	3.76

DESIGN #2, CLINE LIBRARY (GREEN-ROOF RUNOFF REDUCTION)

- If a Green-roof is applied, the runoff coefficient for all building roofs is reduced (.95 to .2), resulting in a lower Q from the Rational Method.
- Using the newly reduced Runoff flow for a 25-year storm, Manning's equation is used to back calculate the minimum pipe diameter to convey the flow

Table 6: Rational Method to determine 25-year storm for watershed with green-roofs applied to buildings

	Surface Type 1	Runoff Coefficient "C"	Area (acres)	Surface Type 2	Runoff Coefficient "C"	Area (acres)	Surface Type 3	Runoff Coefficient "C"	Area (acres)	Rainfall Intensity (in/hr) "i"	Cf	Total Flow (cfs)
25 year	Cline-Eastburn Roof	0.20	2.89	Cline-Eastburn Parking Lot	0.95	4.64	Gravel Parking Lot	0.50	0.26	5.34	1.1	30.06

Table 7: Manning's Equation for minimum pipe diameter to convey a 25-year storm after green-roof

Storm Event			Channel		Channel	Min	
Flow			Hydraulic	Channel	Cross-Sectional	Diameter	
(cfs)	k	n	Radius	Slope	Area	(ft)	
30.06	1.49	0.027	0.83	0.005	8.70	3.33	

Closest - Accommodating Pipe size is 42"

DESIGN #3, CLINE LIBRARY (PERMEABLE PAVEMENT REDUCTION)

- If permeable pavement is applied, the runoff coefficient for all parking lots is reduced (.95 to .5), resulting in a lower Q from the Rational Method.
- Using the newly reduced Runoff flow for a 25-year storm, Manning's equation is used to back calculate the minimum pipe diameter to convey the flow

Table 8: Rational Method to determine 25-year storm for watershed with green-roofs applied to buildings

	Surface Type 1	Runoff Coefficient (C)	Area (acres)	Surface Type 2	Runoff Coefficient (C)	Area (acres)	Surface Type 3	Runoff Coefficient (C)	Area (acres)	Rainfall Intensity (in/hr) "i"	Cf	Total Flow (cfs)
25 year	Cline-Eastburn Roof	0.95	2.89	Cline-Eastburn Parking Lot	0.5	4.64	Gravel Parking Lot	0.5	0.26	5.34	1.1	30.53

Table 9: Manning's Equation for minimum pipe diameter to convey a 25-year storm after permeable pavement reduction

Storm Event			Channel		Channel	Min	Closest
Flow (cfs)	k	n	Hydraulic Radius	Channel Slope	Cross-Sectional Area	Diameter (ft)	Accommodating
30.53	1.49	0.027	0.84	0.005	8.81	3.35	Pipe size is 42"

COST ANALYSIS

Table 9: Cost Analysis for All Designs

Cost analysis - Design 1									
Building	Item	Unit Cost	Unit	Quantity	Cost (\$)				
	Cut/Fill	\$2.58	Cubic ft	10452.0	\$26,966.2				
EastBurn-Cline Library	Repave	\$1.67	Square ft	1608.0	\$2,685.4				
	Pipe (D 48")	\$65.00	ft	268.0	\$17,420.0				
			Tota	al Cost	\$48,596				
Cost analysis - Design 2									
Building	Item	Unit Cost	Unit	Quantity	Total Cost (\$)				
	Cut/Fill	\$2.58	Cubic ft	9648.0	\$24,891.8				
EastBurn Clina Library	Repave	\$1.67	Square ft	1608.0	\$2,685.4				
Lastburn-Cline Library	Pipe (D 42")	\$55.00	ft	268.0	\$14,740.0				
	Green Roof	\$10.00	Square ft	125888.4	\$1,258,884.0				
			Tota	\$1,485,678					
	Cost analys	is - Design 3							
Building	Item	Unit Cost	Unit	Quantity	Total Cost (\$)				
	Cut/Fill	\$2.58	Cubic ft	9648.0	\$24,891.8				
EastBurn Clina Library	Repave	\$1.67	Square ft	1608.0	\$2,685.4				
Eastburn-Cline Library	Pipe (D 42")	\$55.00	ft	268.0	\$14,740.0				
	Porous Asphalt (PA)	\$0.75	Square ft	213444.0	\$160,083.0				
		Tota	l Cost	\$219,279.6					

FINAL DESIGN RECOMMENDATION

 The cost analysis shows that Design 1, where nothing but the pipe size is changed, is the most cost effective and efficient design to control flooding at Cline Library/Eastburn education

Figure 9: 48" Corrugated Metal Pipe Storm drain to be used in parking lot [6]

STAFFING COST ANALYSIS

Table 10: Actual Staffing Cost

Personnel Cost Estimate of Services						
1.0	Personnel	Classification	Hours	Rate (\$/Hr)	Cost	
		SENG	172	135	\$23220	
		ENG	343	75	\$25725	
		LSVR	50	65	\$3250	
		<u>AA</u>	<u>44</u>	<u>50</u>	<u>\$2200</u>	
		Total Personnel			\$54395	
2.0	Equipment	Hours Used	Renting	Charge	Cost	
		50	\$50	/hr	\$2500	
Total Cost \$56895						

SCHEDULE

Table 11: Project Schedule

Task Name	Start Time	Finish Time
1.0 Site Surveying	Mon 8/29/16	Fri 9/16/16
2.0 Site Mapping	Sat 9/23/16	Mon 9/26/16
3.0 Hydrologic Analysis	Tue 9/27/16	Wed 10/5/16
4.0 Hydraulic Analysis	Thu 10/6/16	Wed 10/19/16
5.0 Proposed Solutions	Thu 10/20/16	Tue 12/13/16
6.0 Cost Analysis	Sat 12/10/16	Tue 12/13/16
6.0 Impact	Wed 12/14/16	Thu 12/15/16
7.0 Project Management	Mon 8/29/16	Thu 12/15/16

Legend

Completed Behind Schedule

Completed On Time

IMPACTS

17

Figure 10: Impact Flowchart

ACKNOWLEDGEMENTS

- Technical Adviser #1
- Grading instructor

• Technical adviser #2

• Client: NAU Facilities

REFERENCES

- [1] http://nau.edu/marketing/logos/
- [2] https://upload.wikimedia.org/wikipedia/en/c/ce/Flagstaff_cityseal.jpg
- [3] COE AND VAN LOO L.L.C., "Northen Arizona University North Campus Drainage Concerns Phase I", Flagstaff, 2013.
- [4] City of Flagstaff Engineering Division Stormwater Management Section, "CITY OF FLAGSTAFF STORMWATER MANAGEMENT DESIGN MANUAL", *Flagstaffstormwater.com*, 2016. [Online]. Available: http://www.flagstaffstormwater.com/DocumentCenter/View/16. [Accessed: 11- Feb- 2016].
- [5] Oas.org, "CHAPTER 8 FLOODPLAIN DEFINITION AND FLOOD HAZARD ASSESSMENT", 2016. [Online]. Available: http://www.oas.org/dsd/publications/unit/oea66e/ch08.htm#b. frequency of flooding. [Accessed: 18- Feb- 2016].
- [6]http://www.conteches.com/DesktopModules/Bring2mind/DMX/Addons/NewGallery/GetImage.ashx?img=6063&w=80
 0&h=600&c=false
- [7] http://www.darknewday.com/green-roof-design-2470/2470-13-green-roof-design/
- [8] https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Permeable_paver_demonstration.jpg/300px-Permeable_paver_demonstration.jpg

QUESTIONS?